

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 8

3CHI True Strains- Cruise Control

Sample ID: SA-250114-5534 Batch: 09JAN2025-TS-CC Ype: Finished Product - In Aatrix: Concentrate - Vape Jnit Mass (g):		Received: 01/17/2 Completed: 02/10		Client 3Chi 275 Medical Dr Carmel, IN 460 USA Lic. #: 18_0235	
			Summary Test Cannabinoids Heavy Metals Microbials Mycotoxins Pesticides Residual Solvents Terpenes	Date Tested 02/05/2025 02/04/2025 02/05/2025 02/10/2025 02/10/2025 02/04/2025 02/05/2025	Status Tested Tested Tested Tested Tested Tested
ND	51.7 %	90.6 %	Not Tested	Not Tested	Yes
Total ∆9-THC	Δ8-THC	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization
nalyte	L	.OD (%) 0095	LOQ (%) 0.0284	Result (%) ND	Result (mg/g) ND
nalyte BC		.OD (%)	(%)	(%)	(mg/g)
nalyte BC BCA		.OD (%) 0095	(%) 0.0284	(%) ND	(mg/g) ND
nalyte BC BCA BCV		000 (%) 0095 .0181	(%) 0.0284 0.0543	(%) ND ND 0.15	(mg/g) ND ND
nalyte BC BCA BCV BD BDA		00 (%) 0095 .0181 .006	(%) 0.0284 0.0543 0.018	(%) ND ND ND	(mg/g) ND ND ND
nalyte BC BCA BCV BD BDA BDA BDV	L 0. 0 0 0 0 0. 0. 0. 0. 0. 0.	OD (%) 0095 .0181 .006 0081 0043 0061	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182	(%) ND ND 6.15 ND ND ND	(mg/g) ND ND 61.5 ND ND ND
nalyte BC BCA BCV BD BDA BDA BDV BDVA		OD (%) 0095 .0181 .006 0081 0043 0061 .0021	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063	(%) ND ND 6.15 ND ND ND	(mg/g) ND ND 61.5 ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDA BDV BDVA BG		00 (%) 0095 .0181 .006 0081 0043 0061 .0021 0057	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172	(%) ND ND 6.15 ND ND ND 5.14	(mg/g) ND ND 61.5 ND ND ND ND 51.4
nalyte BC BCA BCV BD BDA BDA BDV BDVA BG BGA		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147	(%) ND ND 6.15 ND ND ND 5.14 ND	(mg/g) ND ND 61.5 ND ND ND 51.4 ND
nalyte BC BCA BCV BD BDA BDA BDV BDVA BG BGA BL		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049 .0112	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335	(%) ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND	(mg/g) ND ND 61.5 ND ND ND 51.4 ND ND ND ND
nalyte BC BCA BCV BD BDA BDA BDV BDVA BG BGA BL BLA		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049 .0112 .0124	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371	(%) ND ND 6.15 ND ND 5.14 ND ND ND ND ND	(mg/g) ND ND 01.5 ND ND ND 51.4 ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDA BDV BDVA BG BGA BL BLA BN		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049 .0112 .0124 0056	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169	(%) ND ND ND 6.15 ND ND 5.14 ND ND ND ND 3.22	(mg/g) ND ND ND 61.5 ND ND ND 51.4 ND ND ND ND ND 32.2
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BL BLA BN BNA		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049 .0112 .0124 .0056 .006	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND	(mg/g) ND ND ND 61.5 ND ND ND 51.4 ND ND ND ND 32.2 ND
nalyte BC BCA BCV BD BDA BDA BDV BDVA BG BGA BLA BLA BNA BNA BT		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049 .0112 .0124 .0056 .006 .0018	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND	(mg/g) ND ND ND 61.5 ND ND 51.4 ND S1.4 ND ND 32.2 ND ND ND 32.2 ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BLA BLA BNA BNA BT 4,8-iso-THC		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049 .0112 .0124 .0056 .006	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND	(mg/g) ND ND ND 61.5 ND ND ND 51.4 ND ND ND ND 32.2 ND
nalyte BC BCA BCV BD BDA BDA BDV BDVA BG BGA BLA BLA BNA BNA BT 4,8-iso-THC 8-iso-THC		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02	(%) ND ND ND 6.15 ND ND 5.14 ND ND 3.22 ND ND ND ND 3.22 ND ND	(mg/g) ND ND ND 61.5 ND ND 51.4 ND 51.4 ND ND 32.2 ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BL BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-THC		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND ND 0.620	(mg/g) ND ND ND 61.5 ND ND 51.4 ND 51.4 ND ND 32.2 ND ND 32.2 ND ND ND 6.20
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BLA BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-THC 8-THC		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067 0104	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND ND 0.620 51.7	(mg/g) ND ND ND ND 61.5 ND ND 51.4 ND 51.4 ND ND 32.2 ND ND 32.2 ND ND ND 6.20 517
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BL BLA BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-THC 8-THC 8-THCV 9-THC		OD (%) 0095 .0181 .006 0081 0043 0061 .0021 0057 0049 .0112 .0124 .0056 .006 .0018 0067 .0104 .0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND ND 0.620 51.7 0.430	(mg/g) ND ND ND ND ND S1.4 ND S1.4 ND ND 32.2 ND ND S2.2 ND ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.5 S1.5
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BLA BLA BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-THC 8-THCV 9-THC 9-THCA		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067 0104 0067 0067 0067 0067 0067 0067 0067 0076	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0227	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND ND 0.620 51.7 0.430 ND	(mg/g) ND ND ND ND ND ND S1.4 ND ND ND 32.2 ND ND ND S2.2 ND ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND S1.5 ND ND S1.4 ND S1.5 ND ND S1.5 ND ND S1.5 ND ND S1.5 ND ND S1.5 ND ND S1.5 ND ND S1.4 ND ND S1.4 ND S1.5 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND ND S1.4 ND ND S1.4 ND ND ND S1.4 ND ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND ND S1.4 ND ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BL BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-iso-THC 8-THC 8-THC 9-THC 9-THC 9-THCA 9-THCV		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 0.018 0067 0067 0067 0076 0084	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0227 0.0251	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND ND 0.620 51.7 0.430 ND ND ND ND	(mg/g) ND ND ND ND ND ND S1.4 ND ND ND 32.2 ND ND ND S2.2 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BL BLA BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-iso-THC 8-THC 8-THC 9-THC 9-THCA 9-THCV 9-THCV 9-THCV		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067 0104 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0076 0084 0069	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0217 0.0251 0.0206	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND ND 0.620 51.7 0.430 ND ND 1.42	(mg/g) ND ND ND ND ND ND S1.4 ND ND S1.4 ND ND 32.2 ND ND S2.2 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND ND S1.4 ND ND S1.4 ND ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND ND S1.4 ND ND ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND1 S1.4 ND
Analyte BC BCA BCV BD BDA BDV BDVA BG BGA BL BLA BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-iso-THC 8-THC 8-THC 9-THC 9-THCA 9-THCV 9-THCV 9-THCVA xo-THC		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067 0067 0067 0076 0084 0069 0062	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0227 0.0251 0.0206 0.0186	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND 3.22 ND ND 0.620 51.7 0.430 ND ND 1.42 ND	(mg/g) ND ND ND ND ND ND S1.4 ND ND S1.4 ND ND 32.2 ND ND S2.2 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND ND S1.4 ND S1.4 ND ND ND ND ND ND ND ND ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBDVA CBCA CB		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0069 0062 0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0217 0.0251 0.0266 0.0186 0.02	(%) ND ND ND 6.15 ND ND 5.14 ND ND 5.14 ND ND 3.22 ND ND 0.620 51.7 0.430 ND ND 1.42 ND ND ND 1.42 ND ND	(mg/g) ND ND ND ND ND ND S1.4 ND ND S1.4 ND ND 32.2 ND ND S2.2 ND ND S1.4 ND ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids by Analyte CBC CBCA CBCA CBCV CBD CBDA CBDV CBDVA CBDV CBDVA CBC CBCA CBC CBCA CBC CBCA CBC CBCA CBC CBC		OD (%) 0095 .0181 .006 0081 0043 0061 0021 0057 0049 .0112 0124 0056 .006 .0018 0067 0067 0067 0076 0084 0069 0062 0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.02277 0.0251 0.0206 0.0186 0.02 0.02	(%) ND ND ND 6.15 ND ND 5.14 ND ND 3.22 ND ND 3.22 ND ND 0.620 51.7 0.430 ND ND 1.42 ND ND 1.42 ND ND 1.42 ND	(mg/g) ND ND ND ND ND ND ND 51.4 ND ND 32.2 ND ND 32.2 ND ND 6.20 517 4.30 ND ND 6.20 517 4.30 ND ND 14.2 ND ND 14.2 ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

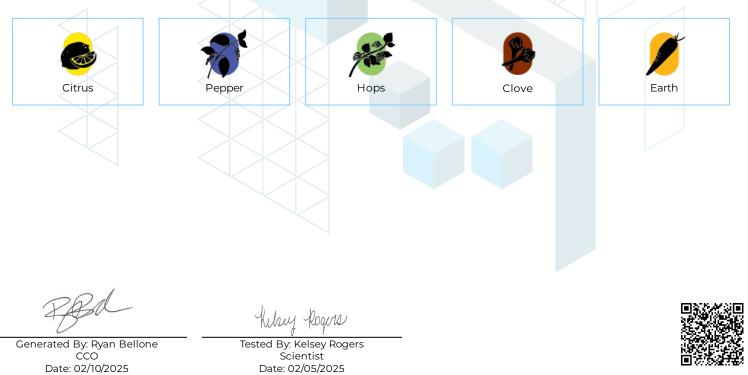
1 Hac-MR/ é Luco PJLA Generated By: Ryan Bellone Tested By: Scott Caudill Testin CCO Laboratory Manager ISO/IEC 17025:2017 Accredited Accreditation #108651 Date: 02/10/2025 Date: 02/05/2025

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 8

3CHI True Strains- Cruise Control


Sample ID: SA-250114-55342 Batch: 09JAN2025-TS-CC Type: Finished Product - Inhalable Matrix: Concentrate - Vape Unit Mass (g):

Received: 01/17/2025 Completed: 02/10/2025 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Terpenes by GC-MS

icipenes by do	in o						
Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.002	0.01	0.0115	Limonene	0.002	0.01	1.1
(+)-Borneol	0.002	0.01	<loq< td=""><td>Linalool</td><td>0.002</td><td>0.01</td><td>0.2</td></loq<>	Linalool	0.002	0.01	0.2
Camphene	0.002	0.01	0.0218	β-myrcene	0.002	0.01	0.136
Camphor	0.004	0.02	ND	Nerol	0.002	0.01	ND
3-Carene	0.002	0.01	ND	cis-Nerolidol	0.002	0.01	ND
β-Caryophyllene	0.002	0.01	0.834	trans-Nerolidol	0.002	0.01	ND
Caryophyllene Oxide	0.002	0.01	0.0482	Ocimene	0.002	0.01	0.0398
α -Cedrene	0.002	0.01	ND	α -Phellandrene	0.002	0.01	ND
Cedrol	0.002	0.01	ND	α -Pinene	0.002	0.01	0.152
Eucalyptol	0.002	0.01	0.0284	β-Pinene	0.002	0.01	0.119
Fenchone	0.004	0.02	<loq< td=""><td>Pulegone</td><td>0.002</td><td>0.01</td><td>ND</td></loq<>	Pulegone	0.002	0.01	ND
Fenchyl Alcohol	0.002	0.01	0.0614	Sabinene	0.002	0.01	ND
Geraniol	0.002	0.01	0.0109	Sabinene Hydrate	0.002	0.01	ND
Geranyl Acetate	0.002	0.01	ND	α -Terpinene	0.002	0.01	<loq< td=""></loq<>
Guaiol	0.002	0.01	ND	γ-Terpinene	0.002	0.01	<loq< td=""></loq<>
Hexahydrothymol	0.002	0.01	ND	α -Terpineol	0.001	0.005	0.026
α -Humulene	0.002	0.01	0.315	γ-Terpineol	0.001	0.005	ND
Isoborneol	0.002	0.01	ND	Terpinolene	0.002	0.01	0.0216
Isopulegol	0.002	0.01	ND	Valencene	0.002	0.01	ND
				Total Terpenes (%)			3.15

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 8

3CHI True Strains- Cruise Control

Sample ID: SA-250114 Batch: 09JAN2025-TS Type: Finished Produ Matrix: Concentrate - Unit Mass (g):	S-CC loct - Inhalable	Received: 01/17/2025 Completed: 02/10/2025	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Heavy Metal	s by ICP-MS		
Heavy Metals	s by ICP-MS	LOQ (ppm)	Result (ppm)
		LOQ (ppm) 0.02	Result (ppm)
Analyte	LOD (ppm)		
Analyte Arsenic	LOD (ppm) 0.002	0.02	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 02/10/2025

Tested By: Chris Farman

Fested By: Chris Farmar Scientist Date: 02/04/2025

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 8

3CHI True Strains- Cruise Control

Sample ID: SA-250114-55342 Batch: 09JAN2025-TS-CC Type: Finished Product - Inhalable Matrix: Concentrate - Vape Unit Mass (g):

Received: 01/17/2025 Completed: 02/10/2025 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

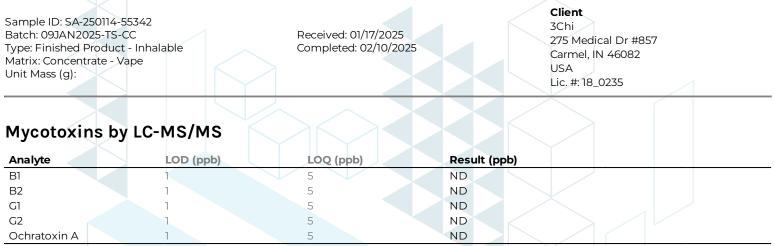
Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acetamiprid	30	100	ND	Imazalil	30	100	ND
Azoxystrobin	30	100	ND	Imidacloprid	30	100	ND
Bifenazate	30	100	ND	Kresoxim methyl	30	100	ND
Bifenthrin	30	100	ND	Malathion	30	100	ND
Boscalid	30	100	ND	Metalaxyl	30	100	ND
Carbofuran	30	100	ND	Methiocarb	30	100	ND
Chloranthraniliprole	30	100	ND	Myclobutanil	30	100	ND
Chlorfenapyr	30	100	ND	Naled	30	100	ND
Chlorpyrifos	30	100	ND	Paclobutrazol	30	100	ND
Clofentezine	30	100	ND	Permethrin	30	100	ND
Coumaphos	30	100	ND	Phosmet	30	100	ND
Cypermethrin	30	100	ND	Piperonyl Butoxide	30	100	ND
Diazinon	30	100	ND	Propiconazole	30	100	ND
Dimethomorph	30	100	ND	Pyrethrins	30	100	ND
Ethoprophos	30	100	ND	Pyridaben	30	100	ND
Etofenprox	30	100	ND	Spinetoram	30	100	ND
Etoxazole	30	100	ND	Spinosad	30	100	ND
Fenhexamid	30	100	ND	Spiromesifen	30	100	ND
Fenoxycarb	30	100	ND	Spirotetramat	30	100	ND
Fenpyroximate	30	100	ND	Spiroxamine	30	100	ND
Fipronil	30	100	ND	Tebuconazole	30	100	ND
Fludioxonil	30	100	ND	Thiacloprid	30	100	ND
				Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 02/10/2025

Tested By: Anthony Mattingly Scientist Date: 02/10/2025


This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 8

3CHI True Strains- Cruise Control

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 02/10/2025

Tested By: Anthony Mattingly Scientist

Date: 02/10/2025 Date: 02/10/2025
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

1

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Not Detected per 1 gram

6 of 8

3CHI True Strains- Cruise Control

Sample ID: SA-250114-55342 Batch: 09JAN2025-TS-CC Type: Finished Product - Inhalable Matrix: Concentrate - Vape Unit Mass (g):		l: 01/17/2025 ed: 02/10/2025	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #:18_0235
Microbials by PCR and	Plating		
	Plating LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Analyte		Result (CFU/g)	Result (Qualitative)
Analyte Total aerobic count			Result (Qualitative)
Microbials by PCR and Analyte Total aerobic count Total coliforms Generic E. coli	LOD (CFU/g)	ND	Result (Qualitative)

Shiga-toxin producing E. coli (STEC)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 02/10/2025

Natalia Wright

Tested By: Natalia Wright Laboratory Technician Date: 02/05/2025

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 8

3CHI True Strains- Cruise Control

Sample ID: SA-250114-55342 Batch: 09JAN2025-TS-CC Type: Finished Product - Inhalable Matrix: Concentrate - Vape Unit Mass (g):

Received: 01/17/2025 Completed: 02/10/2025 Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Residual Solvents by HS-GC-MS

Analyte	LOD	LOQ	Result	Analyte	LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)		(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane		29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone cco Date: 02/10/2025

Tested By: Kelsey Rogers Scientist Date: 02/04/2025

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

8 of 8

3CHI True Strains- Cruise Control

Sample ID: SA-250114-55342 Batch: 09JAN2025-TS-CC Type: Finished Product - Inhalable Matrix: Concentrate - Vape Unit Mass (g):

Received: 01/17/2025 Completed: 02/10/2025

Client 3Chi

3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (ppn	n) Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acetamiprid	5000	Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Azoxystrobin	40000	Imidacloprid	3000
Bifenazate	5000	Kresoxim methyl	1000
Bifenthrin	500	Malathion	5000
Boscalid	10000	Metalaxyl	15000
Carbofuran	30	Methiocarb	30
Chloranthraniliprole	40000	Myclobutanil	9000
Chlorfenapyr	30	Naled	500
Chlorpyrifos	30	Paclobutrazol	30
Clofentezine	500	Permethrin	20000
Coumaphos	30	Phosmet	200
Cypermethrin	1000	Piperonyl Butoxide	8000
Diazinon	200	Propiconazole	20000
Dimethomorph	20000	Pyrethrins	1000
Ethoprophos	30	Pyridaben	3000
Etofenprox	30	Spinetoram	3000
Etoxazole	1500	Spinosad	3000
Fenhexamid	10000	Spiromesifen	12000
Fenoxycarb	30	Spirotetramat	13000
Fenpyroximate	2000	Spiroxamine	30
Fipronil	30	Tebuconazole	2000
Fludioxonil	30000	Thiacloprid	30

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
В1	5 B2	5
GI	5 G2	5
Ochratoxin A	5	

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories and provide measurement uncertainty upon request.