

 KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

ample ID: SA-240308-361 batch: 23FEB2024-CBDI ype: Finished Product - In 1atrix: Concentrate - Distil Init Mass (g):	nhalable	Received: 03/12 Completed: 03		Client 3Chi 275 Medical D Carmel, IN 46 USA Lic. #: 18_0235	082
	23FEB2024 CBDI		Summary Test Cannabinoids Heavy Metals Microbials Mycotoxins Pesticides Residual Solvent	Date Tested 03/20/2024 03/21/2024 03/14/2024 03/19/2024 03/19/2024 03/19/2024 03/18/2024	Status Tested Tested Tested Tested Tested
ND	99.3 %	99.9 %	Not Tested	Not Tested	Yes
Total ∆9-THC	СВД	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization
	y HPLC-PDA an		LOQ (%)	Result (%)	Result (mg/g)
nalyte	LOD				
nalyte 3C	LOD (%)	5	(%)	(%)	(mg/g)
alyte BC BCA	LOD (%) 0.009	5	(%) 0.0284	(%) ND	(mg/g) ND
halyte BC BCA BCV	LOD (%) 0.009 0.018	5	(%) 0.0284 0.0543	(%) ND ND	(mg/g) ND ND
halyte BC BCA BCV BD	LOD (%) 0.009 0.018 0.006	5 1 5 1	(%) 0.0284 0.0543 0.018	(%) ND ND ND	(mg/g) ND ND ND ND
halyte BC BCA BCV BD BDA	LOD (%) 0.009 0.018 0.006 0.008	5 1 5 11 3	(%) 0.0284 0.0543 0.018 0.0242	(%) ND ND ND 99.3	(mg/g) ND ND ND 993
halyte BC BCA BCV BD BDA BDA BDV	LOD (%) 0.009 0.018 0.006 0.008 0.004	5 1 5 1 3 1	(%) 0.0284 0.0543 0.018 0.0242 0.013	(%) ND ND ND 99.3 ND	(mg/g) ND ND ND 993 ND
halyte BC BCA BCA BCV BD BDA BDA BDV BDVA BG	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005	5 1 5 1 3 1 3 1 7	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172	(%) ND ND 99.3 ND 0.651 ND ND ND	(mg/g) ND ND 993 ND 6.51 ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005 0.004	5 1 5 1 3 1 1 1 7 9	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147	(%) ND ND 99.3 ND 0.651 ND ND ND ND	(mg/g) ND ND 993 ND 6.51 ND ND ND ND
nalyte ac ac ac ac ac ac ac ac ac ac	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005 0.004 0.005 0.004 0.005	5 1 5 1 3 1 1 7 9 2	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335	(%) ND ND 99.3 ND 0.651 ND ND ND	(mg/g) ND ND 993 ND 6.51 ND ND ND ND ND
nalyte ac ac ac ac ac ac ac ac ac ac	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.005 0.004 0.012 0.012	5 1 5 1 3 1 1 7 9 2 4	(%) 0.0284 0.0543 0.018 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371	(%) ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND	(mg/g) ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND
nalyte 3C 3CA 3CV 3D 3DA 3DA 3DV 3DVA 3G 3GA 3L 3LA 3N	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005 0.004 0.0112 0.012 0.005	5 1 5 1 3 1 1 3 1 1 7 9 2 4 6	(%) 0.0284 0.0543 0.018 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169	(%) ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND	(mg/g) ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCA BCV BD BDA BDA BDV BDVA BDVA BGA BLA BLA BLA BN BNA	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.012 0.005 0.005	5 1 5 1 1 5 1 1 3 1 1 7 9 2 4 6 5	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181	(%) ND ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCA BCV BDCA BDA BDV BDVA BGA BGA BLA BLA BLA BNA BNA BT	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005 0.004 0.012 0.012 0.012 0.005 0.005 0.006 0.012	5 1 5 1 3 1 1 7 9 9 2 4 4 6 5 3	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054	(%) ND ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BLA BLA BLA BNA BT 8-THC	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005 0.004 0.012 0.012 0.012 0.012 0.005 0.006 0.012 0.005 0.006	5 1 5 1 3 1 1 7 9 9 2 4 6 6 5 1 4	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.00633 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312	(%) ND ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BLA BLA BLA BNA BT 8-THC 9-THC	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.012 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.012 0.005 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.005 0.012 0.005 0.00	5 1 5 11 5 11 3 11 7 9 9 2 4 6 6 5 1 4 6	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312	(%) ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BL BLA BLA BN BNA BT 8-THC 9-THC 9-THCA	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.012 0.012 0.005 0.006 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.00	5 1 5 1 3 1 7 9 2 4 6 5 1 4 6 4 4 4	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.027 0.0251	(%) ND ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND
nalyte BC BCA BCV BD BDA BDV BDVA BG BGA BLA BLA BLA BN BNA BT 8-THC 9-THC 9-THCA 9-THCV	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.012 0.012 0.005 0.006 0.018 0.010 0.018 0.010 0.018	5 1 5 1 3 1 7 9 2 4 6 5 1 4 6 5 1 4 6 5 1 1 1 7 9 2 4 6 5 1 1 7 9 2 4 6 6 5 1 7 9 9 2 4 6 6 7 7 9 9 2 4 6 6 7 7 9 9 2 7 7 9 9 2 7 7 9 9 2 7 7 9 9 9 2 7 7 9 9 9 2 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.0227 0.0251	(%) ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND
malyte BC BCA BCV BD BDA BDV BDVA BG BGA BLA BLA BLA BNA BT 8-THC 9-THC 9-THCA 9-THCV 9-THCV	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.012 0.012 0.005 0.006 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.012 0.005 0.00	5 1 5 1 3 1 7 9 2 4 6 5 1 4 6 5 1 4 6 5 1 1 1 7 9 2 4 6 5 1 1 7 9 2 4 6 6 5 1 7 9 9 2 4 6 6 7 7 9 9 2 4 6 6 7 7 9 9 2 7 7 9 9 2 7 7 9 9 2 7 7 9 9 9 2 7 7 9 9 9 2 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.027 0.0251	(%) ND ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids by malyte BC BCA BCV BD BDA BDA BDV BDVA BG BCA BCA BL BLA BLA BLA BN BNA BT 8-THC 9-THC 9-THCA 9-THCV 9-THCVA 0-THCV 5-THCVA	LOD (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.012 0.012 0.005 0.006 0.018 0.010 0.018 0.010 0.018	5 1 5 1 3 1 7 9 2 4 6 5 1 4 6 5 1 4 6 5 1 1 1 7 9 2 4 6 5 1 1 7 9 2 4 6 6 5 1 7 9 9 2 4 6 6 7 7 9 9 2 4 6 6 7 7 9 9 2 7 7 9 9 2 7 7 9 9 2 7 7 9 9 9 2 7 7 9 9 9 2 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.0227 0.0251	(%) ND ND 99.3 ND 0.651 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND 993 ND 6.51 ND ND ND ND ND ND ND ND ND ND ND ND ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 03/21/2024

Tested By: Nicholas Howard

stéd By: Nicholas Howar Scientist Date: 03/20/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

CBD Isolate Client Sample ID: SA-240308-36168 3Chi Batch: 23FEB2024-CBDI Received: 03/12/2024 275 Medical Dr #857 Type: Finished Product - Inhalable Completed: 03/21/2024 Carmel, IN 46082 Matrix: Concentrate - Distillate USA Unit Mass (g): Lic. #: 18_0235 Heavy Metals by ICP-MS Analyte LOD (ppm) LOQ (ppm) Result (ppm) Arsenic ND 0.002 0.02 Cadmium 0.001 0.02 ND 0.002 0.02 Lead <LOQ Mercury 0.012 0.05 ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 03/21/2024

Tested By: Annie Velazquez Laboratory Technician Date: 03/21/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

CBD Isolate

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

Sample ID: SA-240308-36168 Batch: 23FEB2024-CBDI Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 03/12/2024 Completed: 03/21/2024 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

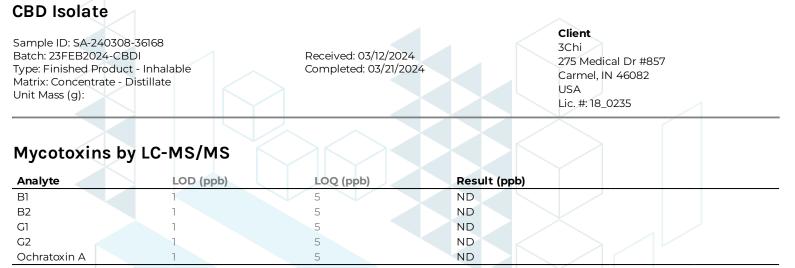
Pesticides by LC-MS/MS

~							
Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acequinocyl	30	100	ND	Imidacloprid	30	100	ND
Acetamiprid	30	100	ND	Kresoxim methyl	30	100	ND
Aldicarb	30	100	ND	Malathion	30	100	ND
Azoxystrobin	30	100	ND	Metalaxyl	30	100	ND
Bifenazate	30	100	ND	Methiocarb	30	100	ND
Bifenthrin	30	100	ND	Methomyl	30	100	ND
Boscalid	30	100	ND	Mevinphos	30	100	ND
Carbaryl	30	100	ND	Myclobutanil	30	100	ND
Carbofuran	30	100	ND	Naled	30	100	ND
Chloranthraniliprole	30	100	ND	Oxamyl	30	100	ND
Chlorfenapyr	30	100	ND	Paclobutrazol	30	100	ND
Chlorpyrifos	30	100	ND	Permethrin	30	100	ND
Clofentezine	30	100	ND	Phosmet	30	100	ND
Coumaphos	30	100	ND	Piperonyl Butoxide	30	100	ND
Cypermethrin	30	100	ND	Prallethrin	30	100	ND
Daminozide	30	100	ND	Propiconazole	30	100	ND
Diazinon	30	100	ND	Propoxur	30	100	ND
Dichlorvos	30	100	ND	Pyrethrins	30	100	ND
Dimethoate	30	100	ND	Pyridaben	30	100	ND
Dimethomorph	30	100	ND	Spinetoram	30	100	ND
Ethoprophos	30 <	100	ND	Spinosad	30	100	ND
Etofenprox	30	100	ND	Spiromesifen	30	100	ND
Etoxazole	30	100	ND	Spirotetramat	30	100	ND
Fenhexamid	30	100	ND	Spiroxamine	30	100	ND
Fenoxycarb	30	100	ND	Tebuconazole	30	100	ND
Fenpyroximate	30 <	100	ND	Thiacloprid	30	100	ND
Fipronil	30	100	ND	Thiamethoxam	30	100	ND
Flonicamid	30	100	ND	Trifloxystrobin	30	100	ND
Fludioxonil	30	100	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 03/21/2024

Tested By: Anthony Mattingly Scientist



Date: 03/21/2024 Date: 03/19/2024 Date: 03/19/2024 Date: 03/19/2024 Date: 03/19/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

RED

Generated By: Ryan Bellone CCO Date: 03/21/2024

Tested By: Anthony Mattingly Scientist

Date: 03/21/2024 Date: 03/19/2024 Date: 03/19/2024 Date: 03/19/2024 Date: 03/19/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

1

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Not Detected per 1 gram

Not Detected per 1 gram

5 of 7

CBD Isolate

Salmonella spp.

Shiga-toxin producing E. coli (STEC)

Sample ID: SA-240308-36168 Batch: 23FEB2024-CBDI Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):		d: 03/12/2024 ted: 03/21/2024	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Microbials by PCR and F	Plating		
Microbials by PCR and F	Plating LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
		Result (CFU/g) ND	Result (Qualitative)
Analyte			Result (Qualitative)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 03/21/2024

Cade Rington

Tested By: Jade Pinkston Microbiology Technician Date: 03/14/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

CBD Isolate

Sample ID: SA-240308-36168 Batch: 23FEB2024-CBDI Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 03/12/2024 Completed: 03/21/2024 Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Residual Solvents by HS-GC-MS

	LOD	LOQ	Result		LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane	10	29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	<rl< td=""></rl<>
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 03/21/2024

Tested By: Kelsey Rogers Scientist Date: 03/18/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

7 of 7

CBD Isolate

Sample ID: SA-240308-36168 Batch: 23FEB2024-CBDI Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 03/12/2024 Completed: 03/21/2024 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082

USA Lic. #: 18_0235

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (ppn	n) Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte I Acetone Acetonitrile Benzene Butane 1-Butanol 2-Butanol 2-Butanone	Limit (ppm) 5000 410 2 5000 5000 5000 5000 60 3880	Analyte Ethylene Oxide Heptane n-Hexane Isobutane Isopropyl Acetate Isopropyl Alcohol Isopropylbenzene Methanol	Limit (ppm) 1 5000 290 5000 5000 5000 5000
Acetonitrile Benzene Butane 1-Butanol 2-Butanol	410 2 5000 5000 5000 5000 60	Heptane n-Hexane Isobutane Isopropyl Acetate Isopropyl Alcohol Isopropylbenzene	5000 290 5000 5000 5000 5000
Benzene Butane 1-Butanol 2-Butanol	2 5000 5000 5000 5000 60	n-Hexane Isobutane Isopropyl Acetate Isopropyl Alcohol Isopropylbenzene	290 5000 5000 5000 5000
Butane 1-Butanol 2-Butanol	5000 5000 5000 5000 60	Isobutane Isopropyl Acetate Isopropyl Alcohol Isopropylbenzene	5000 5000 5000 5000
1-Butanol 2-Butanol	5000 5000 5000 60	Isopropyl Acetate Isopropyl Alcohol Isopropylbenzene	5000 5000 5000
2-Butanol	5000 5000 60	Isopropyl Alcohol Isopropylbenzene	5000 5000
	5000 60	Isopropylbenzene	5000
2-Butanone	60	1 13	
		Methanol	
Chloroform	3880		3000
Cyclohexane		2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acephate	5000	Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acequinocyl	4000	Imidacloprid	3000
Acetamiprid	5000	Kresoxim methyl	1000
Aldicarb	30	Malathion	5000
Azoxystrobin	40000	Metalaxyl	15000
Bifenazate	5000	Methiocarb	30
Bifenthrin	500	Methomyl	100
Boscalid	10000	Mevinphos	30
Carbaryl	500	Myclobutanil	9000
Carbofuran	30	Naled	500
Chloranthraniliprole	40000	Oxamyl	200
Chlorfenapyr	30	Paclobutrazol	30
Chlorpyrifos	30	Permethrin	20000
Clofentezine	500	Phosmet	200
Coumaphos	30	Piperonyl Butoxide	8000
Cypermethrin	1000	Prallethrin	400
Daminozide	30	Propiconazole	20000
Diazinon	200	Propoxur	30
Dichlorvos	30	Pyrethrins	1000
Dimethoate	30	Pyridaben	3000
Dimethomorph	20000	Spinetoram	3000
Ethoprophos	30	Spinosad	3000
Etofenprox	30	Spiromesifen	12000
Etoxazole	1500	Spirotetramat	13000
Fenhexamid	10000	Spiroxamine	30
Fenoxycarb	30	Tebuconazole	2000
Fenpyroximate	2000	Thiacloprid	30
Fipronil	30	Thiamethoxam	4500
Flonicamid	2000	Trifloxystrobin	30000
Fludioxonil	30000		

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.