

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 8

Sample ID: SA-230412-20 Batch: 11APR2023-CDT-Le Type: Finished Products Matrix: Concentrate - Dist Jnit Mass (g):	G	Collected: 04/11/ Received: 04/19/ Completed: 05/0	2023	Carme USA	edical Dr #857 II, IN 46082 18_0235
			Summa	ry	
			Test	Date Tes	sted Status
			Cannabinoid	ls 04/27/20	23 Tested
			Heavy Metals	s 04/25/20	23 Tested
			Microbials	04/25/20	
			Mycotoxins	04/28/20	023 Tested
			Pesticides	04/28/20	D23 Tested
			Residual Solv	vents 05/09/20	23 Tested
	11APR2023-		Terpenes	05/01/202	23 Tested
ND Total Δ9-THC	90.8 % Δ8-ТНС	95.4 % Total Cannabinoids	Not Tested Moisture Conte	Not Teste	
					Normalization
Cannabinoids b Analyte		-MS/MS, and	or GC-MS/I		
Cannabinoids b Analyte CBC	by HPLC-PDA, LC LOD (%) 0.0095	-MS/MS, and	/or GC-MS/I . oo (%) ⁰²⁸⁴	MS Result (%) ND	Normalization Result (mg/g) ND
Cannabinoids b Analyte CBC CBCA	oy HPLC-PDA, LC LOD (%) 0.0095 0.0181	-MS/MS, and	/or GC-MS/I . oo (%) ⁰²⁸⁴ .0543	MS Result (%) ND ND	Normalization Result (mg/g) ND ND ND
Cannabinoids b Analyte EBC EBCA EBCV	oy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006	-MS/MS, and	/or GC-MS/I . oq (%) 0284 .0543 0.018	MS Result (%) ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND
Cannabinoids b Analyte EBC EBCA EBCV EBD	0.0095 0.0181 0.006 0.0081	-MS/MS, and	Or GC-MS/I .00 (%) 0284 .0543 0.018 .0242	MS Result (%) ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND
Cannabinoids b Analyte BBC BBCA BBCV BBD BBDA	0.0095 0.0181 0.006 0.0081 0.006 0.0081 0.006 0.0081 0.0043	-MS/MS, and	Or GC-MS/I OQ (%) 0284 0543 0.018 0.018 0.0242 0.013	MS Result (%) ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCA CBCV CBD CBDA CBDV	oy HPLC-PDA, LC LoD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0043 0.0061	-MS/MS, and	/or GC-MS/I . oo (%) 0284 .0543 0.018 .0242 0.013 .0182	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCA CBCA CBDA CBDA CBDA CBDV CBDVA	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0043 0.0061 0.0021	-MS/MS, and	/or GC-MS/I . oo (%) 0284 .0543 0.018 .0242 0.013 .0182 0.063	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057	-MS/MS, and	Vor GC-MS/I . OQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBCVA CBGA	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049	-MS/MS, and	Vor GC-MS/I . OQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147	MS Result (%) ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112	-MS/MS, and	Vor GC-MS/I . OQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCA CBCV CBD CBDA CBDA CBDV CBDVA CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0027 0.0049 0.0112 0.0124	-MS/MS, and	Yor GC-MS/I . OQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG CBGA CBL CBLA CBN	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124	-MS/MS, and	Yor GC-MS/I . OQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND N
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0056 0.0061	-MS/MS, and	Yor GC-MS/I . OQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 .0181	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND N
Cannabinoids b Analyte CBC CBCA CBCA CBCV CBDA CBDA CBDV CBDVA CBDVA CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0124 0.0056 0.006 0.018	-MS/MS, and	Yor GC-MS/I .00 (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 0.0181 0.054	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND N
Cannabinoids b Analyte CBC CBCA CBCA CBCV CBD CBDA CBDA CBDV CBDVA CBCA CBC CBCA CBCA CBCA CBCA CBCA CBC	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124	-MS/MS, and	Yor GC-MS/I .00 (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 0.0181 0.054 .0312	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b Analyte CBC CBCA CBCA CBCV CBDA CBDA CBDA CBDV CBDVA CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0124 0.0056 0.006 0.018 0.0104 0.0161	-MS/MS, and	Yor GC-MS/I .000 (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 0.0181 0.054 .0054 .0054 .00312 0.02	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG CBGA CBL CBLA CBN CBNA CBN CBNA CBNA CBT A8-THC A8-THCV A9-THC	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0124 0.0056 0.006 0.018 0.0164 0.0164 0.0164 0.0167 0.0164	-MS/MS, and	Yor GC-MS/I .oQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 1.0161 0.054 1.054 1.054 1.054 1.054 1.054	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG CBGA CBL CBLA CBN CBNA CBN CBNA CBN CBNA CBT A8-THC A8-THCV A9-THC A9-THCA	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0124 0.0056 0.006 0.018 0.0104 0.018 0.0104 0.018 0.0104 0.0057 0.0076 0.0076 0.0076 0.0076	-MS/MS, and	Yor GC-MS/I .000 (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 1.0161 0.054 1.0312 0.024 .002 .002 .0027	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND N
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG CBGA CBL CBLA CBN CBNA CBN CBNA CBN CBNA CBT A8-THC A8-THCV A9-THC A9-THCA A9-THCV	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0057 0.0076 0.0076 0.0076 0.0076	-MS/MS, and	Yor GC-MS/I . OQ (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 0.0181 0.054 .0312 0.054 .0312 0.0251 0.0251 0.026	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b Analyte CBC CBC CBCA CBCV CBD CBDA CBDA CBDV CBDVA CBG CBGA CBL CBLA CBLA CBN CBNA CBT A8-THC A8-THC A9-THC A9-THCA A9-THCV A9-THCVA	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0124 0.0124 0.0056 0.006 0.018 0.0104 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.018 0.0104 0.0056 0.006 0.018 0.019 0.012 0.005 0.05	-MS/MS, and	Yor GC-MS/I .000 (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 0.0181 0.054 .0312 0.024 0.0251 0.0251 0.026 .0186	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b Analyte CBC CBC CBCA CBCV CBD CBDA CBDA CBDV CBDVA CBG CBGA CBL CBLA CBL CBLA CBN CBNA CBT A&-THC A&-THCV A9-THCA A9-THCV A9-THCVA A8-iso-THC	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.0061 0.0067 0.0076 0.0077 0.0076 0.0077 0.0076 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0076 0.0077 0.0077 0.0076 0.0076 0.0077 0.0076 0.0076 0.0077 0.0077 0.0076 0.0077 0.0076 0.0077 0.0076 0.0077 0.0076	-MS/MS, and	Yor GC-MS/I .000 (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 0.0181 0.054 1.0312 0.024 0.0251 0.0251 0.026 .0186 0.02	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b Analyte CBC CBC CBCA CBCV CBD CBDA CBDA CBDA CBDV CBDVA CBDVA CBDVA CBCA CBC CBGA CBL CBLA CBN CBNA CBT A8-THC A9-THC A9-THCA A9-THCVA A8-iso-THC A4,8-iso-THC Total A9-THC	Dy HPLC-PDA, LC LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0124 0.0124 0.0056 0.006 0.018 0.0104 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.018 0.0104 0.0056 0.006 0.018 0.019 0.012 0.005 0.05	-MS/MS, and	Yor GC-MS/I .000 (%) 0284 .0543 0.018 .0242 0.013 .0182 0063 .0172 .0147 .0335 .0371 .0169 0.0181 0.054 .0312 0.024 0.0251 0.0251 0.026 .0186	MS Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 05/09/2023

Tested By: Nicholas Howard

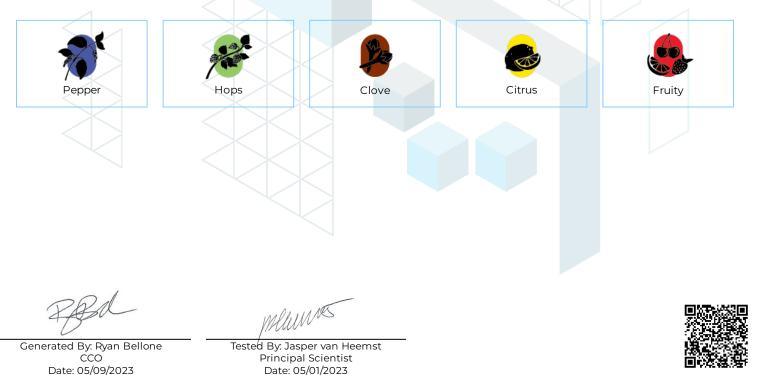
sted By: Nicholas Howard Scientist Date: 04/27/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 8

Delta 8 THC Vape Cartridge - 1 ml, Lemon Gelato (CDT)


Sample ID: SA-230412-20343 Batch: 11APR2023-CDT-LG Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/11/2023 Received: 04/19/2023 Completed: 05/09/2023 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Terpenes by GC-MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.002	0.01	0.15939	Limonene	0.002	0.01	0.44315
(+)-Borneol	0.002	0.01	<loq< td=""><th>Linalool</th><td>0.002</td><td>0.01</td><td>0.16142</td></loq<>	Linalool	0.002	0.01	0.16142
Camphene	0.002	0.01	0.01276	β-myrcene	0.002	0.01	0.29584
Camphor	0.004	0.02	<loq< th=""><th>Nerol</th><th>0.002</th><th>0.01</th><th><loq< th=""></loq<></th></loq<>	Nerol	0.002	0.01	<loq< th=""></loq<>
3-Carene	0.002	0.01	0.01696	cis-Nerolidol	0.002	0.01	ND
β-Caryophyllene	0.002	0.01	0.7008	trans-Nerolidol	0.002	0.01	ND
Caryophyllene Oxide	0.002	0.01	ND	Ocimene	0.002	0.01	ND
α -Cedrene	0.002	0.01	<loq< th=""><th>α-Phellandrene</th><th>0.002</th><th>0.01</th><th>0.09691</th></loq<>	α -Phellandrene	0.002	0.01	0.09691
Cedrol	0.002	0.01	ND	α -Pinene	0.002	0.01	0.05661
Eucalyptol	0.002	0.01	<loq< th=""><th>β-Pinene</th><th>0.002</th><th>0.01</th><th>0.08333</th></loq<>	β-Pinene	0.002	0.01	0.08333
Fenchone	0.004	0.02	<loq< th=""><th>Pulegone</th><th>0.002</th><th>0.01</th><th>ND</th></loq<>	Pulegone	0.002	0.01	ND
Fenchyl Alcohol	0.002	0.01	0.08068	Sabinene	0.002	0.01	ND
Geraniol	0.002	0.01	0.0106	Sabinene Hydrate	0.002	0.01	ND
Geranyl Acetate	0.002	0.01	<loq< th=""><th>α-Terpinene</th><th>0.002</th><th>0.01</th><th><loq< th=""></loq<></th></loq<>	α -Terpinene	0.002	0.01	<loq< th=""></loq<>
Guaiol	0.002	0.01	ND	γ-Terpinene	0.002	0.01	<loq< th=""></loq<>
Hexadhydrothymol	0.002	0.01	0.02825	α -Terpineol	0.001	0.005	0.03587
α -Humulene	0.002	0.01	0.11351	γ-Terpineol	0.001	0.005	0.01762
Isoborneol	0.002	0.01	<loq< th=""><th>Terpinolene</th><th>0.002</th><th>0.01</th><th>0.07832</th></loq<>	Terpinolene	0.002	0.01	0.07832
lsopulegol	0.002	0.01	ND	Valencene	0.002	0.01	0.06593
				Total Terpenes (%)			2.53

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.

3 of 8

Delta 8 THC Vape Cartridge - 1 ml, Lemon Gelato (CDT)

Sample ID: SA-23041 Batch: 11APR2023-CI Type: Finished Produ Matrix: Concentrate - Unit Mass (g):	DT-LG icts	Collected: 04/11/2023 Received: 04/19/2023 Completed: 05/09/2023	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Heavy Metals	s by ICP-MS	LOQ (ppb)	Result (ppb)
Arsenic	2	20	ND
Cadmium	1	20	ND
Lead	2	20	ND
Mercury	12	50	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

Tested By: Kelsey Rogers Scientist Date: 04/25/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 8

Delta 8 THC Vape Cartridge - 1 ml, Lemon Gelato (CDT)

Sample ID: SA-230412-20343 Batch: 11APR2023-CDT-LG Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/11/2023 Received: 04/19/2023 Completed: 05/09/2023 Client 3Chi 275 Medical Dr #857 Carmel, IN 46082

USA Lic. #: 18_0235

Pesticides by LC-MS/MS

AnalyteLOD (ppb)Acephate30Acetamiprid30Aldicarb30Azoxystrobin30Bifenazate30Bifenthrin30Boscalid30Carbaryl30Carbofuran30Chloranthraniliprole30	LOQ (ppb) 100 100 100 100 100 100 100 100 100 10	Result (ppb) ND ND ND ND ND ND ND ND ND ND ND ND ND	Analyte Hexythiazox Imazalil Imidacloprid Kresoxim methyl Malathion Metalaxyl Methiocarb Methomyl Mevinphos Myclobutanil	LOD (ppb) 30 30 30 30 30 30 30 30 30 30 30 30 30	LOQ (ppb) 100 100 100 100 100 100 100 100 100	Result (ppb) ND ND ND ND ND ND ND ND ND ND ND ND
Acetamiprid30Aldicarb30Azoxystrobin30Bifenazate30Bifenthrin30Boscalid30Carbaryl30Carbofuran30	100 100 100 100 100 100 100 100 100 100	ND ND ND ND ND ND ND ND ND	Imazalil Imidacloprid Kresoxim methyl Malathion Metalaxyl Methiocarb Methomyl Mevinphos Myclobutanil	30 30 30 30 30 30 30 30 30 30	100 100 100 100 100 100 100	ND ND ND ND ND ND ND
Aldicarb30Azoxystrobin30Bifenazate30Bifenthrin30Boscalid30Carbaryl30Carbofuran30	100 100 100 100 100 100 100 100 100	ND ND ND ND ND ND ND ND	Imidacloprid Kresoxim methyl Malathion Metalaxyl Methiocarb Methomyl Mevinphos Myclobutanil	30 30 30 30 30 30 30 30	100 100 100 100 100 100	ND ND ND ND ND
Azoxystrobin30Bifenazate30Bifenthrin30Boscalid30Carbaryl30Carbofuran30	100 100 100 100 100 100 100 100	ND ND ND ND ND ND ND	Kresoxim methyl Malathion Metalaxyl Methiocarb Methomyl Mevinphos Myclobutanil	30 30 30 30 30 30 30	100 100 100 100 100 100	ND ND ND ND ND
Bifenzate30Bifenthrin30Boscalid30Carbaryl30Carbofuran30	100 100 100 100 100 100 100	ND ND ND ND ND ND	Malathion Metalaxyl Methiocarb Methomyl Mevinphos Myclobutanil	30 30 30 30 30 30	100 100 100 100 100	ND ND ND ND
Bifenthrin 30 Boscalid 30 Carbaryl 30 Carbofuran 30	100 100 100 100 100 100	ND ND ND ND ND	Metalaxyl Methiocarb Methomyl Mevinphos Myclobutanil	30 30 30 30	100 100 100 100	ND ND ND
Boscalid 30 Carbaryl 30 Carbofuran 30	100 100 100 100 100	ND ND ND ND	Methiocarb Methomyl Mevinphos Myclobutanil	30 30 30	100 100 100	ND ND
Carbaryl 30 Carbofuran 30	100 100 100 100	ND ND ND	Methomyl Mevinphos Myclobutanil	30 30	100 100	ND
Carbofuran 30	100 100 100	ND ND	Mevinphos Myclobutanil	30	100	
	100 100	ND	Myclobutanil			ND
Chloranthraniliprole 30	100			30	100	
		<loo< td=""><td></td><td></td><td>100</td><td>ND</td></loo<>			100	ND
Chlorfenapyr 30			Naled	30	100	ND
Chlorpyrifos 30	100	ND	Oxamyl	30	100	ND
Clofentezine 30	100	ND	Paclobutrazol	30	100	ND
Coumaphos 30	100	ND	Permethrin	30	100	ND
Daminozide 30	100	ND	Phosmet	30	100	ND
Diazinon 30	100	ND	Piperonyl Butoxide	30	100	ND
Dichlorvos 30	100	ND	Prallethrin	30	100	ND
Dimethoate 30	100	ND	Propiconazole	30	100	ND
Dimethomorph 30	100	ND	Propoxur	30	100	ND
Ethoprophos 30	100	ND	Pyrethrins	30	100	ND
Etofenprox 30	100	ND	Pyridaben	30	100	ND
Etoxazole 30	100	ND	Spinetoram	30	100	ND
Fenhexamid 30	100	ND	Spinosad	30	100	ND
Fenoxycarb 30	100	ND	Spiromesifen	30	100	ND
Fenpyroximate 30	100	ND	Spirotetramat	30	100	ND
Fipronil 30	100	ND	Spiroxamine	30	100	ND
Flonicamid 30	100	ND	Tebuconazole	30	100	ND
Fludioxonil 30	100	ND	Thiacloprid	30	100	ND
			Thiamethoxam	30	100	ND
			Trifloxystrobin	30	100	<loq< td=""></loq<>

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

Humes Tested By: Jasper van Heemst

Tested By: Jasper van Heemst Principal Scientist Date: 04/28/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

5 of 8

Delta 8 THC Vape Cartridge - 1 ml, Lemon Gelato (CDT)

Sample ID: SA-230412-20 Batch: 11APR2023-CDT-L Type: Finished Products Matrix: Concentrate - Dis Unit Mass (g):	G	Collected: 04/11/2023 Received: 04/19/2023 Completed: 05/09/20	3 275 Medical Dr #857
Mycotoxins by Analyte	LC-MS/MS	LOQ (ppb)	Result (ppb)
B1	1	5	ND
B2	1	5	ND
G1	1	5	ND
G2	1	5	ND
Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

illum^{its}

Tested By: Jasper van Heemst Principal Scientist Date: 04/28/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

6 of 8

Delta 8 THC Vape Cartridge - 1 ml, Lemon Gelato (CDT)

Sample ID: SA-230412-20343 Batch: 11APR2023-CDT-LG Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g): Microbials by PCR and Plati	Collected: 04/11/2023 Received: 04/19/2023 Completed: 05/09/20	23	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235	
Analyte	LOD (CFU/g)	Result (CFU/g)		
Total aerobic count		ND		
Total coliforms	1	ND		
Generic E. coli	1	ND		
Salmonella spp.	1	ND		
Shiga-toxin producing E. coli (STEC)	1	ND		

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

Tested By: Lucy Jones Scientist Date: 04/25/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 8

Delta 8 THC Vape Cartridge - 1 ml, Lemon Gelato (CDT)

Sample ID: SA-230412-20343 Batch: 11APR2023-CDT-LG Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/11/2023 Received: 04/19/2023 Completed: 05/09/2023 Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA

Lic. #: 18_0235

Residual Solvents by HS-GC-MS

Analyte	LOD	LOQ	Result	Analyte	LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	< 7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

Tested By: Scott Caudill Senior Scientist Date: 05/09/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

Pesticides - CA DCC

8 of 8

Delta 8 THC Vape Cartridge - 1 ml, Lemon Gelato (CDT)

Sample ID: SA-230412-20343 Batch: 11APR2023-CDT-LG Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/11/2023 Received: 04/19/2023 Completed: 05/09/2023

Client

3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb)) Analyte	Limit (ppb)
Arsenic	1500	Lead	500
Cadmium	500	Mercury	1500

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	100000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Glycol	620
Acetonitrile	410	Ethylene Oxide	1
Benzene	2	Heptane	5000
Butane	5000	n-Hexane	290
1-Butanol	5000	Isobutane	5000
2-Butanol	5000	Isopropyl Acetate	5000
2-Butanone	5000	Isopropyl Alcohol	5000
Chloroform	60	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dichloroethane	5	2-Methylbutane	290
1,2-Dimethoxyethane	100	Methylene Chloride	600
Dimethyl Sulfoxide	5000	2-Methylpentane	290
N,N-Dimethylacetamide	1090	3-Methylpentane	290
2,2-Dimethylbutane	290	n-Pentane	5000
2,3-Dimethylbutane	290	1-Pentanol	5000
N,N-Dimethylformamide	880	n-Propane	5000
2,2-Dimethylpropane	5000	1-Propanol	5000
1,4-Dioxane	380	Pyridine	200
Ethanol	5000	Tetrahydrofuran	720
2-Ethoxyethanol	160	Toluene	890
Ethyl Acetate	5000	Trichloroethylene	80
Ethyl Ether	5000	Tetramethylene Sulfone	160
Ethylbenzene	70	Xylenes (o-, m-, and p-)	2170

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acephate	5000	Hexythiazox	2000
Acetamiprid	5000	Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Aldicarb	30	Imidacloprid	3000
Azoxystrobin	40000	Kresoxim methyl	1000
Bifenazate	5000	Malathion	5000
Bifenthrin	500	Metalaxyl	15000
Boscalid	10000	Methiocarb	30
Carbaryl	500	Methomyl	100
Carbofuran	30	Mevinphos	30
Chloranthraniliprole	40000	Myclobutanil	9000
Chlorfenapyr	30	Naled	500
Chlorpyrifos	30	Oxamyl	200
Clofentezine	500	Paclobutrazol	30
Coumaphos	30	Permethrin	20000
Daminozide	30	Phosmet	200
Diazinon	200	Piperonyl Butoxide	8000
Dichlorvos	30	Prallethrin	400
Dimethoate	30	Propiconazole	20000
Dimethomorph	20000	Propoxur	30
Ethoprophos	30	Pyrethrins	1000
Etofenprox	30	Pyridaben	3000
Etoxazole	1500	Spinetoram	3000
Fenhexamid	10000	Spinosad	3000
Fenoxycarb	30	Spiromesifen	12000
Fenpyroximate	2000	Spirotetramat	13000
Fipronil	30	Spiroxamine	30
Flonicamid	2000	Tebuconazole	2000
Fludioxonil	30000	Thiacloprid	30

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Analyte	Limit (ppm)
B1	5 B2	5
GI	5 G2	5
Ochratoxin A	5	

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.