

mple ID: SA-230412-20308 tch: 07APR2023-D8SO be: Finished Products trix: Concentrate - Distilla it Mass (g):		Collected: 04/07 Received: 04/19/ Completed: 05/0	2023	Client 3Chi 275 Medical D Carmel, IN 46 USA Lic. #: 18_0235	082
	07APR2023 DBSO		Summary Test Cannabinoids Heavy Metals Microbials Mycotoxins Pesticides Residual Solvent Terpenes	Date Tested 04/25/2023 04/21/2023 04/25/2023 04/24/2023 04/24/2023 05/09/2023 05/01/2023	Status Tested Tested Tested Tested Tested Tested
ND	69.2 %	98.5 %	Not Tested	Not Tested	Yes
Total ∆9-THC	∆8-THC	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard
		C-MS/MS and			Normalization
annabinoids by _{alyte}					Result (mg/g)
annabinoids by	HPLC-PDA, LO (%) 0.009	15 0	/or GC-MS/MS	Result	Result
annabinoids by alyte C CA	HPLC-PDA, LO (%) 0.009 0.018) 15 0 11 0	/or GC-MS/MS Loo (%) .0284 .0543	Result (%) 4.47 ND	Result (mg/g) 44.7 ND
annabinoids by alyte C CA CV	HPLC-PDA, LO (%) 0.009) 15 0 11 0	/or GC-MS/MS -oo (%) .0284	Result (%) 4.47	Result (mg/g) 44.7 ND ND
annabinoids by alyte C CA CV D	HPLC-PDA, LO (%) 0.009 0.018) 15 0 11 0 5 0	/or GC-MS/MS .000 (%) .0284 .0543	Result (%) 4.47 ND ND 7.19	Result (mg/g) 44.7 ND
annabinoids by alyte C CA CV	HPLC-PDA, LO (%) 0.009 0.018 0.006) 15 0 11 0 6 0 81 0	/or GC-MS/MS Log (%) .0284 .0543 D.018	Result (%) 4.47 ND ND 7.19 ND	Result (mg/g) 44.7 ND ND
annabinoids by alyte C CA CV D DA DV	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008	15 0 11 0 5 0 13 0 13 0 13 0	/or GC-MS/MS	Result (%) 4.47 ND ND 7.19 ND 2.72	Result (mg/g) 44.7 ND ND 71.9 ND 27.2
annabinoids by alyte C CA CV D DA DV DVA	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002	15 0 15 0 16 0 17 0 18 0 13 0 13 0 13 0 14 0 15 0 16 0 17 0	/or GC-MS/MS	Result (%) 4.47 ND ND 7.19 ND 2.72 ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND
annabinoids by alyte C CA CV D DA DV DVA G	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.002 0.005	15 0 11 0 6 0 131 0 133 0 131 0 132 0 133 0 134 0 135 0 136 0 137 0 137 0 137 0	/or GC-MS/MS Log (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3
annabinoids by alyte C CA CV D DA DV DVA G GA	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005 0.005 0.004	15 0 11 0 5 0 31 0 33 0 34 0 35 0 37 0 77 0 9 0	/or GC-MS/MS Log (%) 10284 10543 10284 10543 10082 10082 10063 10172 10147	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND
annabinoids by alyte C CA CV D DA DV DVA G GA L	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.006 0.002 0.005 0.004 0.005 0.004 0.005	15 0 11 0 5 0 6 0 31 0 33 0 34 0 35 0 36 0 37 0 77 0 9 0 2 0	/or GC-MS/MS Log (%) .0284 .0543 .0084 .0242 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND ND
annabinoids by alyte C CA CV D DA DV DVA G GA L LA	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.005 0.004 0.012 0.012	15 0 11 0 5 0 13 0 13 0 14 0 15 0 16 0 17 0 19 0 2 0 4 0	/or GC-MS/MS Log (%) 10284 10543 10284 10543 10082 10082 10063 10172 10147 10335 10371	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND ND ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND ND ND
annabinoids by alyte C CA CV D DA DV DVA G GA L LA N	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.012	15 0 11 0 5 0 31 0 33 0 34 0 77 0 9 0 2 0 4 0	/or GC-MS/MS Log (%) 10284 10543 10284 10543 10082 10082 10063 10172 10177 10335 10335 10371 10169	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND ND ND 5.18	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND ND ND ND S1.8
alyte C CA CV D DA DV DVA G GA L LA N NA	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004	15 0 11 0 5 0 13 0 13 0 14 0 15 0 16 0 16 0	/or GC-MS/MS Log (%) 10284 10543 10284 10543 10082 10082 10063 10172 10177 10335 10335 10371 10169 10181	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND ND ND 5.18 ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND 51.8 ND
alyte C C CA CV D DA DV DVA G GA L LA N NA T	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.005 0.004 0.012 0.012 0.012 0.005 0.006 0.012	15 0 11 0 5 0 13 0 13 0 14 0 15 0 16 0 16 0 16 0 16 0 16 0 17 0	/or GC-MS/MS .ooq (%) .0284 .0543 .0082 .0063 .00172 .0147 .0335 .0335 .0371 .0169 .0181 .054	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND ND S.18 ND 2.72	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 51.8 ND 27.2
alyte C C CA CV D DA DV DVA G GA L LA N NA T -THC	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	15 0 11 0 5 0 33 0 33 0 34 0	/or GC-MS/MS .ooq (%) .0284 .0543 .0084 .0242 .0018 .0042 .0063 .0172 .0172 .0172 .0172 .0172 .0172 .0172 .0172 .0172 .0172 .0172 .0172 .0169 .0031 .0543	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND ND 5.18 ND 5.18 ND 2.72 69.2	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 51.8 ND 27.2 692
alyte c ca cv d D D D D C ca cv D D D C ca cv D D D D D D D D D D D D D	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012	15 0 11 0 5 0 31 0 33 0 34 0 4 0 4 0	/or GC-MS/MS Log (%) 10284 10543 10284 10543 10242 10018 10242 10018 100182 100172 10172	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND ND 2.43 ND ND 5.18 ND 2.72 69.2 0.226	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND ND ND 51.8 ND 27.2 692 2.26
alyte C C CA CV D DA DV DVA G GA L LA N NA T -THC -THCV -THCV -THC	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.012 0.005 0.006 0.012	15 0 11 0 5 0 13 0 13 0 14 0 15 0 16 0 16 0 17 0 19 0 2 0 4 0 16 0 17 0 17 0 16 0 17 0 17 0 16 0 17 0 17 0	/or GC-MS/MS . 000 (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0371 .0169 .0181 .0054 .0054 .0054 .0054 .0054 .0054 .00312 .002 .0227	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND 2.43 ND ND 5.18 ND 2.72 69.2 0.226 ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND ND 51.8 ND 51.8 ND 27.2 692 2.26 ND
alyte C C CA CV D DA DV DVA G GA L LA N NA T THC THCV THC THCA	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.0010 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.010 0.012 0.010 0.012 0.010 0.010 0.012 0.010 0.010 0.010 0.010 0.010 0.0100 0.0100000000	15 0 11 0 5 0 5 0 33 0 33 0 33 0 34 0 9 0 2 0 4 0 6 0 6 0 77 0 9 0 2 0 4 0 77 0 6 0 7 0 7 0	/or GC-MS/MS . 000 (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0371 .0169 .0181 .0054 .0052 .0054 .0052 .0054 .0054 .0054 .0054 .0052 .0054 .0054 .0054 .0054 .0054 .0052 .0054 .0054 .00525 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .0055555 .0055555 .005555555 .005555555555	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND 2.43 ND ND 5.18 ND 2.72 69.2 0.226 ND ND ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 25.3 ND 24.3 ND 24.3 ND 25.8 ND 27.2 692 226 ND ND ND
alyte	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.0010 0.012 0.012 0.010 0.012 0.010 0.012 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0100 0.0100 0.0100000000	15 0 11 0 5 0 13 0 13 0 14 0 15 0 16 0 16 0 16 0 17 0 16 0 17 0 16 0 17 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 17 0 18 0 19 0	/or GC-MS/MS . 000 (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .00172 .0147 .0335 .0371 .0169 .0181 .0054 .0055 .0057 .0054 .00555 .00555 .00555 .005555 .005555555555	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND 2.43 ND ND 5.18 ND 2.72 69.2 0.226 ND ND ND ND ND ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND ND S1.8 ND 27.2 692 2.26 ND 27.2 692 2.26 ND ND ND ND ND
alyte	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.0010 0.012 0.012 0.012 0.010 0.012 0.010 0.012 0.0010 0.0100 0.0100000000	15 0 11 0 5 0 5 0 33 0 33 0 33 0 33 0 34 0 99 0 2 0 4 0 6 0 6 0 6 0 77 0 99 0 2 0 6 0 6 0 6 0 6 0 6 0 77 0 99 0 0 0 14 0 19 0 12 0	/or GC-MS/MS . 000 (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .00172 .0147 .0335 .0371 .0169 .0181 .0054 .0054 .00312 0.02 .0227 .0227 .0251 .0206 .0186	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND 2.43 ND ND 5.18 ND 2.72 69.2 0.226 ND ND ND ND ND ND ND ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND 51.8 ND 27.2 692 226 ND ND ND ND ND ND ND ND ND
alyte C C C C C C C C C C C C C	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.006 0.012 0.0010 0.012 0.012 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.0100 0.0100 0.0100000000	15 0 11 0 55 0 13 0 13 0 13 0 14 0 19 0 2 0 4 0 16 0 6 0 14 0 19 0 2 0 16 0 16 0 14 0 19 0 12 0 12 0 12 0	/or GC-MS/MS . 000 (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .00172 .0147 .0335 .0371 .0169 .0181 .0054 .00312 .0054 .00312 .0054 .00312 .00251 .0226 .0227 .02251 .0206 .0186 .002	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND 2.43 ND ND 5.18 ND 2.72 69.2 0.226 ND ND ND ND ND ND ND ND 1.18	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND 51.8 ND 27.2 692 226 ND ND ND ND ND ND ND ND 11.8
alyte	HPLC-PDA, LO (%) 0.009 0.018 0.006 0.008 0.004 0.002 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.005 0.004 0.012 0.0010 0.012 0.012 0.012 0.010 0.012 0.010 0.012 0.0010 0.0100 0.0100000000	15 0 11 0 55 0 13 0 13 0 13 0 14 0 19 0 2 0 4 0 16 0 6 0 14 0 19 0 2 0 16 0 16 0 14 0 19 0 12 0 12 0 12 0	/or GC-MS/MS . 000 (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .00172 .0147 .0335 .0371 .0169 .0181 .0054 .0054 .00312 0.02 .0227 .0227 .0251 .0206 .0186	Result (%) 4.47 ND ND 7.19 ND 2.72 ND 2.43 ND 2.43 ND 2.43 ND ND 5.18 ND 2.72 69.2 0.226 ND ND ND ND ND ND ND ND	Result (mg/g) 44.7 ND ND 71.9 ND 27.2 ND 24.3 ND 24.3 ND 51.8 ND 27.2 692 226 ND ND ND ND ND ND ND ND ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 05/09/2023

Tested By: Nicholas Howard

sted By: Nicholas Howard Scientist Date: 04/25/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories and provide measurement uncertainty upon request.

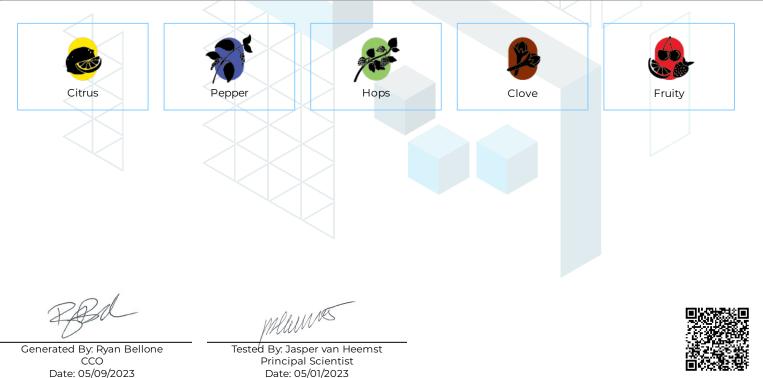
Certificate of Analysis

1 of 8

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 8

Delta 8 Focused Blend Vape Cartridge - Soothe - 1ml


Sample ID: SA-230412-20308 Batch: 07APR2023-D8SO Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/07/2023 Received: 04/19/2023 Completed: 05/09/2023 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Terpenes by GC-MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.002	0.01	0.05693	Limonene	0.002	0.01	0.50428
(+)-Borneol	0.002	0.01	ND	Linalool	0.002	0.01	0.11487
Camphene	0.002	0.01	0.01589	β-myrcene	0.002	0.01	0.3627
Camphor	0.004	0.02	<loq< td=""><td>Nerol</td><td>0.002</td><td>0.01</td><td>ND</td></loq<>	Nerol	0.002	0.01	ND
3-Carene	0.002	0.01	ND	cis-Nerolidol	0.002	0.01	ND
β -Caryophyllene	0.002	0.01	0.43837	trans-Nerolidol	0.002	0.01	0.01425
Caryophyllene Oxide	0.002	0.01	0.02146	Ocimene	0.002	0.01	ND
α -Cedrene	0.002	0.01	<loq< th=""><th>α-Phellandrene</th><th>0.002</th><th>0.01</th><th>0.10077</th></loq<>	α -Phellandrene	0.002	0.01	0.10077
Cedrol	0.002	0.01	ND	α -Pinene	0.002	0.01	0.20616
Eucalyptol	0.002	0.01	ND	β-Pinene	0.002	0.01	0.15496
Fenchone	0.004	0.02	ND	Pulegone	0.002	0.01	ND
Fenchyl Alcohol	0.002	0.01	0.05093	Sabinene	0.002	0.01	ND
Geraniol	0.002	0.01	<loq< td=""><td>Sabinene Hydrate</td><td>0.002</td><td>0.01</td><td>ND</td></loq<>	Sabinene Hydrate	0.002	0.01	ND
Geranyl Acetate	0.002	0.01	ND	α -Terpinene	0.002	0.01	ND
Guaiol	0.002	0.01	ND	γ-Terpinene	0.002	0.01	0.01522
Hexadhydrothymol	0.002	0.01	<loq< td=""><td>α-Terpineol</td><td>0.001</td><td>0.005</td><td>0.02889</td></loq<>	α -Terpineol	0.001	0.005	0.02889
α -Humulene	0.002	0.01	0.09292	γ-Terpineol	0.001	0.005	0.0208
Isoborneol	0.002	0.01	<loq< th=""><th>Terpinolene</th><th>0.002</th><th>0.01</th><th>0.04282</th></loq<>	Terpinolene	0.002	0.01	0.04282
Isopulegol	0.002	0.01	ND	Valencene	0.002	0.01	0.01701
				Total Terpenes (%)			2.30

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit 📎

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

3 of 8

Delta 8 Focused Blend Vape Cartridge - Soothe - 1ml

Sample ID: SA-23041: Batch: 07APR2023-D Type: Finished Produ Matrix: Concentrate - Unit Mass (g):	8SO cts	Collected: 04/07/2023 Received: 04/19/2023 Completed: 05/09/2023	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Heavy Metals	-		Desult (nnh)
Analyte	s by ICP-MS LOD (ppb)	LOQ (ppb)	Result (ppb)
Analyte Arsenic	-	20	ND
Analyte	-		

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone ссо Date: 05/09/2023

Tested By: Kelsey Rogers Scientist Date: 04/21/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories no characteristic acceptance and the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 8

Delta 8 Focused Blend Vape Cartridge - Soothe - 1ml

Sample ID: SA-230412-20308 Batch: 07APR2023-D8SO Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/07/2023 Received: 04/19/2023 Completed: 05/09/2023 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Pesticides by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Acephate	30	100	ND	Hexythiazox	30	100	ND
Acetamiprid	30	100	ND	Imazalil	30	100	ND
Aldicarb	30	100	ND	Imidacloprid	30	100	ND
Azoxystrobin	30	100	ND	Kresoxim methyl	30	100	ND
Bifenazate	30	100	ND	Malathion	30	100	ND
Bifenthrin	30	100	ND	Metalaxyl	30	100	ND
Boscalid	30	100	ND	Methiocarb	30	100	ND
Carbaryl	30	100	ND	Methomyl	30	100	ND
Carbofuran	30	100	ND	Mevinphos	30	100	ND
Chloranthraniliprole	30	100	ND	Myclobutanil	30	100	ND
Chlorfenapyr	30	100	<loq< td=""><td>Naled</td><td>30</td><td>100</td><td>ND</td></loq<>	Naled	30	100	ND
Chlorpyrifos	30	100	ND	Oxamyl	30	100	ND
Clofentezine	30	100	ND	Paclobutrazol	30	100	ND
Coumaphos	30	100	ND	Permethrin	30	100	ND
Daminozide	30	100	ND	Phosmet	30	100	ND
Diazinon	30	100	ND	Piperonyl Butoxide	30	100	ND
Dichlorvos	30	100	ND	Prallethrin	30	100	ND
Dimethoate	30	100	ND	Propiconazole	30	100	ND
Dimethomorph	30	100	ND	Propoxur	30	100	ND
Ethoprophos	30	100	ND	Pyrethrins	30	100	ND
Etofenprox	30	100	ND	Pyridaben	30	100	ND
Etoxazole	30	100	ND	Spinetoram	30	100	ND
Fenhexamid	30 <	100	ND	Spinosad	30	100	ND
Fenoxycarb	30	100	ND	Spiromesifen	30	100	ND
Fenpyroximate	30	100	ND	Spirotetramat	30	100	ND
=ipronil	30	100	ND	Spiroxamine	30	100	ND
=lonicamid	30	100	ND	Tebuconazole	30	100	ND
Fludioxonil	30 <	100	ND	Thiacloprid	30	100	ND
				Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	<loq< td=""></loq<>

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

Humes

Tested By: Jasper van Heemst Principal Scientist Date: 04/24/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 8

Delta 8 Focused Blend Vape Cartridge - Soothe - 1ml

Sample ID: SA-230412-2030 Batch: 07APR2023-D8SO Type: Finished Products Matrix: Concentrate - Distille Unit Mass (g):	ate	Collected: 04/07/2023 Received: 04/19/2023 Completed: 05/09/2023	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
B1	i	5	ND
B2	1	5	ND
GI	1	5	ND
G2	1	5	ND
Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

illum^{its}

Tested By: Jasper van Heemst Principal Scientist Date: 04/24/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 8

Delta 8 Focused Blend Vape Cartridge - Soothe - 1ml

Client Sample ID: SA-230412-20308 3Chi Collected: 04/07/2023 Batch: 07APR2023-D8SO 275 Medical Dr #857 Received: 04/19/2023 Type: Finished Products Completed: 05/09/2023 Carmel, IN 46082 Matrix: Concentrate - Distillate USA Unit Mass (g): Lic. #: 18_0235 **Microbials by PCR and Plating** Analyte LOD (CFU/g) Result (CFU/g) Total aerobic count ND Total coliforms ND Generic E. coli ND Salmonella spp. ND Shiga-toxin producing E. coli (STEC) ٦ ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

Tested By: Lucy Jones Scientist Date: 04/25/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 8

Delta 8 Focused Blend Vape Cartridge - Soothe - 1ml

Sample ID: SA-230412-20308 Batch: 07APR2023-D8SO Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/07/2023 Received: 04/19/2023 Completed: 05/09/2023 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Residual Solvents by HS-GC-MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	< 7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/09/2023

Tested By: Scott Caudill Senior Scientist Date: 05/09/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

8 of 8

Delta 8 Focused Blend Vape Cartridge - Soothe - 1ml

Sample ID: SA-230412-20308 Batch: 07APR2023-D8SO Type: Finished Products Matrix: Concentrate - Distillate Unit Mass (g):

Collected: 04/07/2023 Received: 04/19/2023 Completed: 05/09/2023

Client

3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Arsenic	1500	Lead	500
Cadmium	500	Mercury	1500

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	100000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Glycol	620
Acetonitrile	410	Ethylene Oxide	1
Benzene	2	Heptane	5000
Butane	5000	n-Hexane	290
1-Butanol	5000	Isobutane	5000
2-Butanol	5000	Isopropyl Acetate	5000
2-Butanone	5000	Isopropyl Alcohol	5000
Chloroform	60	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dichloroethane	5	2-Methylbutane	290
1,2-Dimethoxyethane	100	Methylene Chloride	600
Dimethyl Sulfoxide	5000	2-Methylpentane	290
N,N-Dimethylacetamide	1090	3-Methylpentane	290
2,2-Dimethylbutane	290	n-Pentane	5000
2,3-Dimethylbutane	290	1-Pentanol	5000
N,N-Dimethylformamide	880	n-Propane	5000
2,2-Dimethylpropane	5000	1-Propanol	5000
1,4-Dioxane	380	Pyridine	200
Ethanol	5000	Tetrahydrofuran	720
2-Ethoxyethanol	160	Toluene	890
Ethyl Acetate	5000	Trichloroethylene	80
Ethyl Ether	5000	Tetramethylene Sulfone	160
Ethylbenzene	70	Xylenes (o-, m-, and p-)	2170

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acephate	5000	Hexythiazox	2000
Acetamiprid	5000	Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Aldicarb	30	Imidacloprid	3000
Azoxystrobin	40000	Kresoxim methyl	1000
Bifenazate	5000	Malathion	5000
Bifenthrin	500	Metalaxyl	15000
Boscalid	10000	Methiocarb	30
Carbaryl	500	Methomyl	100
Carbofuran	30	Mevinphos	30
Chloranthraniliprole	40000	Myclobutanil	9000
Chlorfenapyr	30	Naled	500
Chlorpyrifos	30	Oxamyl	200
Clofentezine	500	Paclobutrazol	30
Coumaphos	30	Permethrin	20000
Daminozide	30	Phosmet	200
Diazinon	200	Piperonyl Butoxide	8000
Dichlorvos	30	Prallethrin	400
Dimethoate	30	Propiconazole	20000
Dimethomorph	20000	Propoxur	30
Ethoprophos	30	Pyrethrins	1000
Etofenprox	30	Pyridaben	3000
Etoxazole	1500	Spinetoram	3000
Fenhexamid	10000	Spinosad	3000
Fenoxycarb	30	Spiromesifen	12000
Fenpyroximate	2000	Spirotetramat	13000
Fipronil	30	Spiroxamine	30
Flonicamid	2000	Tebuconazole	2000
Fludioxonil	30000	Thiacloprid	30

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Analyte	Limit (ppm)
B1	5 B2	5
GI	5 G2	5
Ochratoxin A	5	

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.